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Electrospun nanofibers: A prospective electro-active
material for constructing high performance
Li-ion batteries
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Yun-Sung Lee,*c Seeram Ramakrishna*d and Srinivasan Madhavi*aef

In the present review, we describe the development of a high energy density LIB fabricated with all 1D

nanofibers as the anode and cathode, as well as a separator-cum-electrolyte prepared by an electrospinning

technique without compromising the power capability and cycle life. Such a unique assembly certainly

enables realizing the advantages of using 1D nanostructures in practical LIBs, irrespective of the anode

or cathode in the presence of gelled polyvinylidene fluoride-co-hexafluoropropylene as the separator-

cum-electrolyte. Outstanding cycling profiles with high power densities were noted for all the

configurations evaluated. This excellent performance opens up new avenues for the development of

high performance Li-ion power packs with a long cycle life and high energy and power densities to

drive zero emission transportation applications in the near future, and opens up new research activities

in this field as well.

Introduction

Lithium-ion batteries (LIB) are considered as one of the most
promising energy storage devices today because of their high
volumetric and gravimetric energy density with light weight
and good shape versatility.1,2 Such advantages make LIBs as
attractive candidates for miniature applications, such as laptops,
cameras, and mobile phones, and they are currently employed to
drive hybrid electric vehicles (HEV) and expected to power
electric vehicles (EV) in the near future.3–5 Although LIBs can
deliver high energy density, achieving a high power capability
remains an issue for the abovementioned applications. However,
their poor power capability can be improved in three different
ways: (i) nanostructuring the electro-active materials, (ii) surface
modification with conductive coatings and (iii) utilizing both
techniques together.6–8 The usage of nanostructured materials

certainly leads to a reduction of the volumetric capacity, but
the severe reactivity towards the electrolyte solution has to
be compromised.6 Among the nanostructures investigated,
the one-dimensional (1D) morphology has been found to be
appealing, in terms of its shorter Li-diffusion pathways, high
specific surface area and good contact with current collectors
compared to the bulk.6 A large variety of 1D morphologies like
nanowires, nanotubes, nanorods, nanofibers, and nanowhiskers,
have been proposed as prospective electro-active materials for
either the anodes or cathodes with a core–shell or solid interior
or hollow structured morphology.6–10 Surface modification with
carbon or with a composite with carbonaceous materials has
also been reported to improve the battery performance.11

Unfortunately, all the reported studies with the various 1D
nanostructures are limited to half-cell configurations only, or
they are otherwise tested with commercially available bulk
materials in full-cell assemblies. Thus, the advantages of using
1D nanostructures in practical cells have not yet been fully
realized. In order to recognize the performance of such 1D
materials in full-cell assemblies, Ramakrishna and co-workers12

recently reported the concept of fabricating LIBs using all 1D
electro-active materials by electrospinning, e.g. polyvinylidene
fluoride-co-hexafluoropropylene (PVdF-HFP) as the separator-
cum-electrolyte, anatase TiO2 as the anode and LiMn2O4 as the
cathode, achieving excellent cyclability and energy density. Apart
from the morphology, the preparation of the 1D material also plays
a vital role in determining the electrochemical properties.13,14 The
electrospinning technique is one of the most efficient procedures
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to prepare 1D nanostructures with high performance materials for
LIB applications. The high aspect ratio, reproducibility, and
simplicity make this technique very attractive for making 1D
architectures for multifarious applications.15 Very recently,
several start-up companies have started producing various nano-
structures (such as membranes, metals, and metal oxides) by
electrospinning, which clearly indicates the practical viability of

this procedure.14–18 Nevertheless, the proposed concept is not
only limited to the aforesaid materials but can also be easily
extended to the rest of the prospective electro-active materials
tested for LIB applications in the bulk form. In this context, we
would like to describe in detail the recent research activities on the
utilization and demonstration of such practical LIBs composed of
all 1D electrospun electro-active materials in our group.
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The principles of electrospinning

In a typical electrospinning process, three main components are
predominantly utilized: a high voltage power supply, a capillary
tube containing a needle or pipette with a small bore diameter,
and conductive collecting substrates.19,20 The high voltage electric
field is applied between the collector and the polymer fluid
stream (either in solution or in a melt) to induce free charge.21–27

One electrode is placed into the spinning solution/melt and the
other end is attached to the conductive collector. In general, the
collector is simply grounded, as shown in Fig. 1. An applied
electric field is subjected to the end of the capillary tube, which
contains the solution fluid that is held by its surface tension. The
charge carriers present in the organic solvents and polymers
have a lower mobility compared to the aqueous media, and thus
the charges are expected to move through the longer distance of

Fig. 1 Schematic representation of the electrospinning setup with variable needles, collecting substrates, and syringes.
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the liquid.28 When the intensity of the electric field is increased,
the hemispherical surface of the fluid at the tip of the capillary
tube (needle) elongates to form a conical shape called the Taylor
cone. By further increasing the electric field, a critical value is
ultimately attained when the repulsive electrostatic force over-
comes surface tension, and then the charged jet of the fluid is
ejected from the tip of the Taylor cone. The discharged polymer
solution jet undergoes an instability and elongation process,
which allows the jet to become continuous and thin. Moreover,
the solvent evaporates, leaving behind a charged polymer nano-
fiber. In the case of the melt, the discharged jet solidifies as it
travels through the air. The electrospun nanofibers possess unique
characteristics, such as high surface-to-volume ratios, controllable
fiber diameters and surface morphologies (dense, hollow, and
porous), and fibrous structures.29–32 These characteristic pro-
perties are obtained by changing the following parameters:
(i) the system parameters such as the molecular weight, mole-
cular weight distribution and architecture of the polymers
(linear and branched), as well as the polymer solution properties
(viscosity, conductivity, dielectric constant, and surface tension);
(ii) the process parameters such as the electric potential, flow
rate, polymer concentration, distance between the capillary and
collection screen, and the ambient parameters (such as tem-
perature, humidity and air velocity in the chamber) and motion
of the collector as well as by altering the collector, multiple
needles, and core–shell structures.19,33,34 The influence of the
abovementioned variable parameters during the spinning are
schematically illustrated in Fig. 1.

Nanofiber membranes

Polymer membranes/separators are one of the key parts of LIBs
and should be electronically insulating, ionically conducting
and flexible.35–40 The important advantages of using polymer
membranes in practical LIBs are mainly to overcome the
leakage issue and provide shape versatility.41,42 Several polymers,
co-polymers and blend polymers have been explored as prospec-
tive separator-cum-electrolytes, but PVdF-HFP remains the
unanimous choice for practical cells because of its salient
features like high anodic stability (because of the presence of
strong electron-withdrawing groups, i.e. –C–F) and high dielectric
constant (e = 8.4, which assists the greater dissociation of lithium
salts, and thus it provides a large number of charge carriers that
facilitate the enhanced electrochemical performances).39,43–45

Furthermore, the existence of crystalline VdF and amorphous
HFP units are responsible for the excellent chemical and
mechanical stability of the membranes, respectively.43–46 However,
the rest of the polymer membranes explored for LIB applications
are omitted for practical applications, due to their own setbacks,
for example poly(ethylene oxide), PEO, is one of the most com-
prehensively studied system and exhibits ionic conductivities of
the order of 10�8–10�3 S cm�1 between 40 and 100 1C, which is
mainly because of the high degree of crystallinity and low degree of
salt dissociation in amorphous domain.41 Polyacrylonitrile, PAN, is
another important system and has shown excellent conductivity at

ambient conditions (10�3–10�2 S cm�1), but the syneresis of
solvent molecules hinders the possibility of using them in
practical cells.39 Polymethylmethacrylate, PMMA, presents an ionic
conductivity close to that of liquid systems (10�3–10�2 S cm�1);
nevertheless, its poor mechanical stability offsets its advantages.
Although the homo-polymer PVdF alone is not suited for practical
applications due to the poor swelling of liquids and long time
to form a free standing film,35,36,39,43–47 generally, electrospun
membranes enable higher liquid uptake, provide lower inter-
facial resistance, a high Li-ion transport number and exhibit a
liquid-like conductivity over conversional separators prepared
by either solution casting or by a phase inversion process.14,28,48

Taking the advantages of PVdF-HFP described above, nanofibers
membranes were prepared by an electrospinning technique and
their morphological and electrochemical properties are illustrated
in Fig. 2. The non-linear increase in ionic conductivity sug-
gests the electrospun PVdF-HFP membranes obey the Vogel–
Fulcher–Tammann model and exhibit an ionic conductivity of
B3.2 mS cm�2 under ambient conditions.49 The increase in
conductivity with temperature is mainly attributed to the
increase in the number of charge carriers (because of the higher
activation energy).50 The interfacial stability of the nanofibers
membranes with a Li-metal electrode is an essential factor in
demonstrating compatibility towards electrodes. Increases in
the interfacial properties are found to be minimal after five days
for electrospun membranes, and much lower compared to the
same PVdF-HFP-based separator-cum-electrolytes prepared by
conventional phase inversion or by the polymer dissolution
process.51,52 Based on the aforementioned advantages, we used
electrospun PVdF-HFP nanofibers membranes as the separator-
cum-electrolyte for the fabrication of high performance LIBs.

Nanofiber electrodes

Present day LIBs predominantly comprise graphitic anodes
with Li-containing transition metal oxide (LiCoO2, LiMn2O4, and
LiFePO4) as a cathode because of its lower insertion potential
(o0.1 V vs. Li), appreciable theoretical capacity (B372 mA h g�1),
low-cost and eco-friendliness.1,2,53–55 Unfortunately, electrolyte
decomposition in the first discharge, which leads to the formation
of solid electrolyte interface, and SEI, and Li-plating at high
current operation are the main issues from an HEV and EV
point of view.2 Therefore, high performance insertion anodes
are anticipated to fulfill these requirements. Though conver-
sion (displacement) and alloy-based anodes have shown higher
capacities over insertion electrodes, both kinds of materials
experience huge irreversible capacity loss (ICL) in the first cycle,
a higher operating potential (41 V vs. Li), large unit cell volume
variations, and poor long-term cyclability, which renders them as
‘‘show-case’’ anodes.56–60 Among the insertion anodes, anatase
TiO2 was found to be appealing in terms of its good cyclability,
easy synthesis protocol and cost-effectiveness, although it had a
high theoretical capacity (B335 mA h g�1).29,61–66 With the aim of
demonstrating high performance LIBs, we first reported the
electrochemical performance of anatase TiO2 nanofibers prepared
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by electrospinning in a half-cell assembly,67 and then our group
made substantial improvements12,62 by adopting various pro-
cedures such as co-axial spinning,29 using composites with
multi-walled carbon nanotubes,68 composites with graphene63

and oxygen deficient (TiO2�d) fibers.31 Moreover, improvements
made by other researchers,69 such as using nitridated fibers,70,71

multi-channel hollow fibers,72 Ag and Au decorated TiO2,73–75

Nb-doped TiO2,76 N-doped mesoporous carbon decorated TiO2

nanofibers,77 for LIB applications are also worth mentioning.
Before constructing all 1D LIBs, we conducted extensive studies
on various anode and cathode configurations to evaluate the
performance by keeping either the anode or cathode as bulk with
homemade electrospun electrodes. For instance, a LiFePO4/TiO2

nanofibers cell was fabricated in the presence of a Whatman
separator, and it delivered an excellent cyclability of 300 cycles
with a capacity retention of B88%. Although the LiFePO4/TiO2

system presented good electrochemical characteristics, its net
operating potential was limited to B1.4 V. Nevertheless, our
main intention was to construct high energy density and high
performance LIBs using electrospun electro-active materials.
Thus, the electrospun TiO2 nanofiber was coupled with a com-
mercial high voltage (B4 V vs. Li, whereas LiFePO4 is B3.4 V vs. Li)
LiMn2O4 cathode separated by a Whatman paper, and we
evaluated the battery performance at a high current density of
150 mA g�1.62 The LiMn2O4/TiO2 cell rendered B81% of its
initial reversible capacity after 100 cycles with an operating
potential of B2.2 V. Unfortunately, the LiMn2O4/TiO2 cell
experienced more capacity fade than the former system, which
was mainly due to the sluggish Li-diffusion kinetics of the
micron-sized LiMn2O4, and the poor compatibility in electrode/
electrolyte interface as well.49 To overcome the above issue,

we successfully synthesized LiMn2O4 nanofibers with a hollow
structured morphology by electrospinning. The LiMn2O4 hollow
nanofibers delivered a reversible capacity of B120 mA h g�1,
irrespective of the low (15 mA g�1) and high (150 mA g�1)
current densities.78 The half-cell rendered B87% of its initial
capacity after 1250 cycles (at high current rates) with a good
elevated temperature performance as well. In addition, the
improved cubic-tetragonal phase transformation was also noted
for such electrospun LiMn2O4 nanofibers in a half-cell assembly
(Fig. 3). Although few reports could be traced on the synthesis and
electrochemical performance of electrospun LiMn2O4 cathodes,
we observed that the capacity in our work had the best value in
terms of its cyclability and rate capability.79,80 This exceptional
performance of electrospun LiMn2O4 logically led us to fabricate a
full-cell assembly with all 1D electro-active materials. Therefore,
we fabricated an assembly with all 1D LIB cells using LiMn2O4

as the cathode, the PVdF-HFP membrane as the separator-cum-
electrolyte, and TiO2 as the anode with an optimized mass loading
based on the electrode performance in the half-cell assembly. For
the mass balance between the electrodes, both electrodes were
tested in the presence of the gelled electrospun PVdF-HFP
separator-cum-electrolyte. Surprisingly, no obvious difference
between the electrochemical properties was noted for the Whatman
and electrospun membranes.49,81 The full-cell, LiMn2O4/TiO2

with a PVdF-HFP nanofiber membrane delivered an outstanding
cyclability of 700 cycles with a capacity retention of B90% at a
current density of 300 mA g�1.12 This result clearly indicates the
influence of the 1D morphology and it being favorable for
electrochemical activity even under harsh testing conditions
(e.g. a current density of 2.4 A g�1).62 Again, the energy density
and operating potential remain the issue for all 1D LiMn2O4/TiO2

Fig. 2 (a and b) FE-SEM pictures of the electrospun PVdF-HFP membrane with different magnifications, (c) temperature dependence of the ionic
conductivity recorded between two stainless steel blocking electrodes, and (d) complex impedance spectra studied between two metallic lithium
non-blocking electrodes over time. Reproduced from ref. 12 with permission from The Royal Society of Chemistry.
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with PVdF-HFP membrane cells when considering HEV and EV,
since the operating potential is limited to B2.15 V. Therefore,
we made an attempt to replace the LiMn2O4 by a high voltage
LiNi0.5Mn1.5O4 (B4.7 V vs. Li) using the same electrospinning
approach (Fig. 4).82 The homemade, electrospun LiNi0.5Mn1.5O4

displayed much better electrochemical activity and stability than
nanofibers in half-cell assemblies reported elsewhere.83,84 As
expected, in an all 1D configuration, the LiNi0.5Mn1.5O4/TiO2 cell
operates at B2.8 V with a reversible capacity of B102 mA h g�1.
Interestingly the cycling profile of electrospun LiNi0.5Mn1.5O4

cathodes is much better than that of its half-cell assembly
(Fig. 5). Long-term cyclability is another important criterion
and our evaluations clearly suggest the excellent durability of
such cells in the all 1D architecture. Furthermore, the full-cell
retained B86% of its initial reversible capacity after 400 cycles,
which is much better than the only available previous report
by Brutti et al.85 They used a ZnO-modified LiNi0.5Mn1.5O4

cathode and nano-Li (2 wt%) powders incorporated anatase
TiO2 anode to achieve a capacity retention of B75% after
50 cycles with less coulombic efficiency (B90%) and reversible
capacity (B105 mA h g�1) at a current density of 50 mA g�1.
On the other hand, an unmodified LiNi0.5Mn1.5O4/TiO2 cell dis-
played poor capacity profiles (reversible capacity of B60 mA h g�1)
and presented B70% reversible capacity after 50 cycles under
similar testing conditions. This present in our work result clearly
reveals and parallels the importance of the ‘‘nano-concept’’ to
realize such electro-active materials in the unique 1D architecture
made by electrospinning.

At this point, it is unfair to claim that the ‘‘nano-concept’’ is
promising by just studying the same spinel phase cathodes
(LiMn2O4 or LiNi0.5Mn1.5O4) with anatase nanofibers. Thus,
in order to support the 1D concept, we tested altering either
the cathode or anode in the full-cell assembly. In this regard,
to overcome the shortcomings observed in the anatase-based
systems, such as the high operating potential (B1.7 V vs. Li)
and ICL observed in the first cycle, which result in the suppression
of the net energy density.66 The former issue is associated with the
reduction of the net operating potential, while the latter leads to a
higher cathode active mass loading (in order to compensate the
ICL in the first cycle), respectively. In addition, although TiO2

shows a higher theoretical capacity (B335 mA h g�1), its reversi-
bility is limited to B0.5 mole only.64,66 Apart from the usage of
high voltage cathodes, another approach to widen the energy
density is the utilization of lower redox potential anodes.49,66

On the other hand, spinel phase LiCrTiO4 and Li4Ti5O12 materials
also exhibit a lower redox potential (B1.55 V vs. Li) than anatase
TiO2 (B1.7 V vs. Li), although the theoretical capacity is limited
to B157 and B175 mA h g�1, respectively.86,87 Very recently,

Fig. 4 FE-SEM pictures of (a) as-spun LiNi0.5Mn1.5O4, (b) as-spun anatase
TiO2 nanofibers, FE-SEM images of calcined nanofibers of (c) LiNi0.5Mn1.5O4,
(d) anatase TiO2, TEM pictures of calcined nanofibers (e) LiNi0.5Mn1.5O4 and
(f) anatase TiO2. Reproduced from ref. 83 with permission from The Royal
Society of Chemistry.

Fig. 3 (a) FE-SEM pictures of the as-spun LiMn2O4 nanofibers (green
nanofibers), (b) FE-SEM picture of the electrospun LiMn2O4 hollow nano-
fibers sintered at 800 1C for 5 h. Inset: magnified view of the nanofibers,
indicating their hollow structure, (c) magnified view of the single hollow
nanofibers, (d) TEM image of the sintered electrospun LiMn2O4 hollow
nanofibers. Reproduced from ref. 30 with permission from The Royal
Society of Chemistry.
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Fig. 5 (a) Schematic representation of a typical Li-ion battery comprising the all one-dimensional electrospun nanofibers (LiMn2O4/PVdF-HFP/TiO2),
(b) CV curves of all electrospun LiMn2O4/TiO2(IV) or LiNi0.5Mn1.5O4/TiO2(V) full-cell assembly at a slow scan rate of 0.1 mV s�1 (thin lines show the
performance of Li/TiO2(I), Li/LiMn2O4(II) and Li/LiNi0.5Mn1.5O4(III) electrodes at a scan rate of 0.1 mV s�1), (c) typical galvanostatic charge–discharge curves
of LiMn2O4/TiO2 (at a current density of 150 mA g�1) and LiNi0.5Mn1.5O4/TiO2 (at a current density of 15 mA g�1) full-cells, and (d) normalized capacity of
LiMn2O4/TiO2 (at a current density of 300 mA g�1) and LiNi0.5Mn1.5O4/TiO2 (at a current density of 150 mA g�1) full cells under ambient temperature
conditions. Adopted and compiled from ref. 12 and 83 with permission from The Royal Society of Chemistry.

Fig. 6 (a) FE-SEM pictures of the as-spun TiNb2O7 nanofibers (green nanofibers), inset: magnified view, (b) FE-SEM picture of the electrospun TiNb2O7

nanofibers at 1000 1C for 4 h. Inset: TEM picture, (c) CV curves of the all electrospun LiMn2O4/TiNb2O7 full-cell assembly at a slow scan rate of 0.1 mV s�1

(thin lines show the performance of both the LiMn2O4 cathode and TiNb2O7 anode in a half-cell assembly for comparison at a scan rate of 0.1 mV s�1),
and (d) cycling performance of the all electrospun LiMn2O4/TiNb2O7 full-cell at two different current densities, inset: typical charge–discharge curves
recorded at a current density of 150 mA g�1. Reprinted with permission from ref. 95. Copyright 2014 American Chemical Society.

ChemComm Feature Article

Pu
bl

is
he

d 
on

 2
1 

N
ov

em
be

r 
20

14
. D

ow
nl

oa
de

d 
by

 C
H

O
N

N
A

M
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

1/
20

15
 0

5:
59

:5
7.

 
View Article Online

http://dx.doi.org/10.1039/C4CC07824A


Chem. Commun. This journal is©The Royal Society of Chemistry 2014

Goodenough and co-workers88,89 proposed a new anode frame-
work material (TiNb2O7) with a higher theoretical capacity
(B388 mA h g�1 for 5 moles of Li), which has a similar
operating potential to spinel Li4Ti5O12 (B1.5 V vs. Li). The bulk
TiNb2O7 anodes exhibit very high reversibility (4270 mA h g�1),90–93

but unusual coulombic efficiencies for such framework materials
in a half-cell assembly. Under the optimized synthetic para-
meters, we successfully synthesized single phase TiNb2O7 nano-
fibers and subsequently evaluated their battery performance in a
full-cell assembly.94 In other words, the all 1D LiMn2O7/TiO2

configuration anatase phase was replaced with TiNb2O7 nano-
fibers (LiMn2O4/TiNb2O7). The expected operating potential was
at B2.4 V, which is B0.2 V higher than the former configu-
ration, and hence a slightly higher net energy density was
expected. Furthermore, excellent cyclability was noted for the
all 1D LiMn2O4/TiNb2O7 configuration irrespective of the applied
current densities (Fig. 6). Interestingly, the coulombic efficiency
of the LiMn2O4/TiNb2O7 cell was very close to 100%, which is
much higher than the LiNi0.5Mn1.5O4/TiNb2O7 system reported
by Goodenough and co-workers.88,89 Hence, we strongly believe
the presence of the 1D morphology certainly provides the
enhanced coulombic efficiency with a long life-span, although
it involves a slight reduction in volumetric capacity. Currently,
we are making progress in increasing the energy density by
using LiNi0.5Mn1.5O4 cathodes and are simultaneously exploring
new insertion anodes like Li3Nd3W2O12 (B0.3 V vs. Li) for
constructing high energy density Li-ion power packs.95 The above
studies clearly suggests that the utilization of such a unique
architecture provides a means to realize all 1D nanostructures in
a full-cell assembly with a long cycle life and superior perfor-
mance. Such kinds of LIB configurations could be extended to
other nanostructures composed of different morphologies, such
as nanowires, nanotubes, and nanorods, prepared by various
synthetic approaches to aid our understanding of their advan-
tages in practical cells.

Conclusions

Overall, high voltage cathode (LiNi0.5Mn1.5O4, B4.7 V vs. Li)
and low voltage insertion anodes (TiNb2O7, B1.5 V vs. Li) with
high capacity combinations were successfully fabricated and
studied in an all 1D configuration. The desired energy density
of the Li-ion cells can be tailored by choosing various anode
and cathode combinations. It was very clear that the presence
of 1D nanostructures prepared by electrospinning provides new
avenues for the fabrication of high performance Li-ion cells.
Generally, the usage of nanostructured materials dilutes the
volumetric capacity of the system, although this is not com-
pletely true for all the systems. In fact, in the present case, all the
test electrodes were prepared with 10 mg active mass loading (in a
200 mm2 area), irrespective of the half-cell or full-cell assemblies.
However, the reactivity towards the electrolyte solutions could not
be avoided when using such nanomaterials. The unique 1D nano-
structures are not only limited to the electrospinning technique,
but also 1D materials prepared by other conventional techniques

(such as hydrothermal method) can be explored to realize good
performance in a full-cell assembly by a permutation combi-
nation to attain high performance Li-ion batteries towards
HEVs and EVs.
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