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A B S T R A C T

This study details the synthesis of gold (Au) nanoparticle-supported copper ferrite (CF) over reduced graphene
oxide (Au-CF@rGO) through ultrasonication–dry synthesis techniques. The vigorous stormy mixing and acoustic
cavitation acquired from the intense shock waves produced during ultrasonication can effectively irradiate the
reaction conditions. The as-synthesized nanoparticles exhibit excellent crystallinity as well as homogeneous
distribution over rGO nanosheets, as established by XRD, HR-TEM, Raman, XPS, and EDX analysis. Furthermore,
the electrochemical analysis by cyclic voltammetry and differential pulse voltammetry (DPV) technique was
accomplished by fabricating an Au-CF@rGO/GCE modified electrode. Interestingly, the DPV studies of the
modified Au-CF@rGO/GCE electrode detects the dopamine (DA) in the linear concentration ranges from 0.001
to 119.6 µM, a low detection limit of 0.001 µM, a limit of detection of 0.34 nM, and enhanced sensitivity of 8.743
µAµM−1cm−2. The excellent electrochemical property towards the detection of DA indicates the successful
formation of strongly anchored Au-CF nanoparticles on rGO nanosheets. Conversely, the modified Au-CF@rGO/
GCE electrode shows excellent reproducibility, repeatability, and selectivity with excellent storage stability. In
addition, the electrochemical sensor was used to examine real samples to determine the amount of DA present in
commercially available banana milk samples, with a sensing efficiency of approximately 99%.

1. Introduction

The human central nervous system neurotransmitter of dopamine
(DA) plays several roles in the function of physiological activities, in-
cluding stress, motivated behaviors, reward-driven learning, memory,
mood, and mental cognition. Therefore, the imbalance of DA con-
centrations in human blood and brain systems may reason for neuro-
logical syndromes such as Parkinson’s disease, Alzheimer’s disease,
Schizophrenia, depression, addiction, and Tourette’s syndrome [1–10].
Therefore, the quantitative and sensitive detection of DA for observing
its levels in the human body is necessary. So far, numerous qualitative
and quantitative approaches have been employed to examine DA levels
in the human body such as calorimetry, spectrophotometry, fluores-
cence, chemiluminescence, capillary electrophoresis, and micro-dialysis
[11–19]. However, the aforementioned techniques suffer drawbacks,
including long analysis time, expensive reagents, lack of selectivity, and

expensive instrumentation. In addition, extracellular DA levels in the
cerebrum vary on a subsecond time scale fluctuate on a sub-second
timescale because of the phasic firing of DA neurons. Moreover, accu-
rate measurements at short timescales and detection at low con-
centration levels are essential yet challenging, impeding the practical
application of many techniques.

Therefore, a fast and cost-effective technique with high accuracy for
low concentration of DA is highly desirable. Electrochemical sensing
techniques can offer monitoring for the fast chemical changes that re-
sult from discrete neurochemical actions with fast sampling rates from
the micro to millisecond time scale [20]. However, conventional elec-
trochemical techniques are insufficient for the detection of DA at na-
nomolar levels. To overcome these problems, the determination of DA
by chemically modified electrocatalysts coupled with the use of cata-
lytically active nanomaterials has attained due to its great sensitivity,
resistance to surface fouling, effective mass transport, excellent
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stability, and better controllability in local micro environment. Tran-
sition metals, transition metal oxides, noble metal nanoparticles, and
carbon-based nanostructured materials have been reported as effective
electrocatalysts for the detection of DA in low concentrations because
they possess various physical and chemical properties [4,7,10,21].
Among them, some bimetallic transition metal oxides (ABOx, where A
and B stands for transition metals) deserve significant attention owing
to their prominent electrocatalytic activities, stability, high natural
abundance, and low cost. In particular, copper-based electrocatalysts
have been widely studied because of their superior electrocatalytic
performances in numerous electrochemical energy devices related ap-
plications, such as biosensors, drug sample analyzers, solar cells, bat-
teries, and water splitters, among others [22–26]. Recently, Achary
et al. [27] reported that spinel copper ferrite (CuFe2O4) exhibits an
increased magnitude of electrocatalytic performance because of its
magnetic and dielectric properties, and it offers specific properties such
as moisture insensitivity, high reactivity, and environmentally benign
nature. However, the low sensitivity and selectivity of CuFe2O4 are

major concerns deterring its use for sensing applications. These lim-
itations can be overcome by the hybridization of spinel CuFe2O4 with
suitable carbon-based support material. Thus, the hybridization of
CuFe2O4 and rGO offers a promising solution to improve electron
transport and boost the electrocatalytic activity of CuFe2O4. Among the
various carbon nanostructured materials, reduced graphene oxide
(rGO) possesses the best attractive properties, including high thermal
stability, higher specific surface area, great electrical and thermal
conductivity, high carrier mobility, and greater mechanical properties,
among others. In addition, the oxygenated functional groups present in
rGO sheets allow them to accept a wide range of mono-, bi-, and tri-
metallic nanoparticles through covalent or non-covalent interactions
[28–32]. Further, to increase the sensitivity of CuFe2O4@rGO, gold
nanoparticles were decorated over the synthesized CuFe2O4@rGO, be-
cause they can provide more rapid and higher sensing current responses
during electrochemical sensing applications [33,34]. Preparation
technique also requires further attention for effectively fabricating
sensing electrodes. Numerous techniques are used to prepare hybrid

Scheme 1. US–DS route for the preparation of the Au-CF@rGO nanostructured material.

Fig. 1. (a) XRD and (b) Raman analysis of the rGO, Au-CF@rGO, CF@rGO, and Au@rGO nanomaterials.
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nanostructured materials, such as hydrothermal, precipitation, sol–gel,
and solvothermal synthesis routes. Usually, the chemical and physical
properties of the nanostructured materials are significantly determined
by the preparation techniques used. In the last few years, ultrasonic-
assisted nanostructured material synthesis has garnered great interest
owing to its reputation as a green, economical, and rapid synthetic tool
and ability to produce narrow size distributions under mild conditions
[35–43]. Moreover, the nanostructured materials prepared through
ultrasonication–dry synthesis (US–DS) exhibit high phase purity, de-
fined surface morphology, extensive defect sites, large surface-active
areas, and highly crystalline nanoparticles that are strongly and
homogeneously attached to each layer of the conductive rGO matrix.

Given these facts, this study presents the development of a highly

selective and stable DA sensing electrode material consisting of gold-
supported copper-ferrite on an rGO nanostructure synthesized by an
US–DS method. The physical and electrochemical properties of the
prepared gold (Au) nanoparticle-decorated CuFe2O4@rGO (Au-CF@
rGO) are investigated and compared with CuFe2O4@rGO (CF@rGO)
and Au@rGO. The fabricated Au-CF@rGO/GCE (modified electrode)
glassy carbon electrode exhibits excellent sensing properties, such as a
broad linear range of 0.001–119.6 µM, a limit of detection (LOD) of
0.34 nM, a lower detection limit of 0.001 µM, and enhanced sensitivity
of 8.743 µAµMcm−2 for DA.

Fig.2. (a) XPS spectra survey of Au-CF@rGO and the corresponding deconvoluted spectra of the (b) C 1s, (c) O 1s, (d) Cu 2p, (e) Fe 2p, and (f) Au 4f regions.
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2. Experimental section

2.1. Materials

ACS materials; rGO (purity > 99 wt%). Sigma Aldrich; gold acetate
(Au(acac)3) (97%), iron acetate (Fe(acac)3), copper acetate (Cu(acac)2),
dimethylformamide (DMF), phosphate buffer solution (PBS). All ma-
terials procured in this experiment were used as received.

2.2. Synthesis of Au-CF@rGO, Au@rGO, and CF@rGO

Au-CF@rGO, Au@rGO, and CF@rGO electrode materials were
synthesized by the US–DS method. Formation of high-intensity shock-
waves during ultrasonic irradiation in aqueous solution induces
acoustic cavitation, which aids in concentrating the dispersed sound
energy. This acoustic cavitation can generate heat energy up to 5000 K
and pressures of 500 atm with a cooling rate of 1010 Ks−1. The high
levels of energy generated during these turbulent conditions are ex-
tremely useful to nanostructured chemical synthesis [44–46]. Because
of these properties, ultrasonic waves have become a favored reaction
technique for the efficient synthesis of nanostructured materials. A dry
synthesis method was performed as a follow-up to greatly enhance the
number of defect sites in the rGO nanosheets, which help to create
higher number of active sensing sites. Furthermore, mono-, bi-, and tri-
metallic nanomaterials are easily anchored inside these nanostructures,

providing more electrochemically active sites with excellent con-
ductivity [47,48]. The notable benefits of the US–DS method are the
effective formation of homogeneously dispersed nanoparticles that
create more active sites, improve the conductivity, and excellent sta-
bility during electrochemical studies.

DMF was used in this synthesis techniques mainly to obtain the
homogeneous dispersion of the metal salts on carbon nanostructures
and provide excellent nanoparticle morphology [47]. Moreover, the
acac ligands are decomposed at high temperatures (calcinations pro-
cess) to form nanoparticles on carbon nanostructures. Here, during the
decomposition process, the acac ligand assists for better adhesion of
nanoparticles to the support carbon nanostructures during the decom-
position process. During the calcinations process, the acac ligands ty-
pically act as bridge between nanoparticles and carbon support, thus,
better adhesion of nanoparticles with carbon nanostructure support
achieved [49]. This homogeneous solution of precursors was ultra-
sonicated for 1 h and then allow to slow evaporated at 100 °C until a
condensed paste formed.

In a typical synthesis of Au-CF@rGO, rGO nanosheets (400 mg)
were dispersed in 30 mL of DMF solvent followed by the gradual ad-
dition of metal precursors such as Cu(acac)2 (40 mg), Fe(acac)3
(240 mg), and Au(acac)3 (40 mg) into the above mixture and stir to
attain a homogeneous solution. The obtained paste was then kept in the
oven at 130 °C until dried solid samples formed before their careful
collection and grinding for 30 min to obtain a homogenous powder
mixture. Lastly, the ground material was sintered under N2 atm at
350 °C for 2 h to produce the final Au-CF@rGO. Similar procedures
were followed to obtain CF@rGO and Au@rGO with their corre-
sponding precursors. The detailed synthetic procedure of the develop-
ment of Au-CF@rGO was represented in Scheme 1.

2.3. Fabrication of the modified electrodes

Initially, the active surface of GCE electrode was well polished with
0.05 µM alumina slurry several times and further cleaned with DI water
and ethanol by ultrasonication. Then the cleaned GCE electrode was
kept in a hot air oven to maintain dryness. 8 µL of the Au-CF@rGO
nanomaterial slurry was drop-casted over the polished GCE surface and
dried under a N2 atm. CF@rGO/GCE and Au@ rGO/GCE modified
electrodes were fabricated using the same procedures.

2.4. Material characterization

The as-synthesized Au@rGO, CF@rGO, and Au-CF@rGO samples
were characterized by X-ray diffractometry (XRD, RigakuUltima),
Raman spectroscopy (LabRam ARAMIS IR2), X-ray photoelectron
spectroscopy (XPS, ULVAC-PHI), field emission scanning electron mi-
croscopy (FE-SEM, Quanta 25 FEG; FEI), high resolution-transmission
electron microscopy (HR-TEM, JEM-2010; JEOL), atomic force micro-
scopy (AFM, XE-100), and N2 adsorption and desorption isotherms
(Micromeritics, ASAP 2020).

2.5. Electrochemical measurements

The electrochemical characterization of the prepared Au-CF@rGO/
GCE electrode was interrogated using a Biologic electrochemical
workstation (VSP-300). The fabricated modified electrode is used as the
working electrode, Pt rod as a counter electrode, and a Ag|AgCl as the
reference electrode.

3. Results and discussion

3.1. Elemental characterization

The XRD and Raman spectroscopy results of the obtained rGO, CF@
rGO, Au@rGO, and Au-CF@rGO are revealed in Fig. 1(a, b),

Fig. 3. FEM-SEM images of (a) Au-CF@rGO, (b) CF@rGO, and (c) Au@rGO.
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respectively. The main peak at around 2θ= ~23.5° agrees to the (002)
plane of the rGO (Fig. 1a). During the US–DS, metallic gold nano-
particles are strongly anchored onto the rGO nanostructures and can be
observed noticeably in the XRD patterns. The face-centered cubic (fcc)
structure of the gold is evident from the peaks around 38°, 44°, 64°, and
77°, which agree to the (111), (200), (220), and (311) planes re-
spectively (ICSD:53763). These results demonstrated the formation of
Au@rGO by the US–DS from Au(acac)3 and rGO. The procedure for
forming CuFe2O4 using Cu(acac)2, Fe(acac)3, and rGO is given in detail
in the experimental section. The diffraction peaks were well indexed
and in accordance with the ICSD:16666 data for the tetragonal phase of
CuFe2O4 [50]. Furthermore, the formation of the trimetallic carbon
nanostructures shows major diffraction peaks of both metallic Au and

CF (Fig. 1 (a)). The XRD analysis confirms that Au@rGO, CF@rGO, and
Au-CF@rGO nanostructured materials prepared by the US–DS demon-
strate high crystallinity and excellent phase purity.

Raman spectra were used to evaluate the defects present in the rGO,
CF@rGO, Au@rGO, and Au-CF@rGO samples as shown in Fig. 1(b).
Two main Raman peaks agreeing to the D and G bands of rGO were
observed at 1365 and 1580 cm−1 respectively. ID/IG ratios were cal-
culated for the rGO (0.397), Au@rGO (0.532), CF@rGO (1.12), and Au-
CF@rGO (1.267). The defects observed in each sample can be attrib-
uted to the presence of single, bimetallic, and trimetallic particles that
strongly interact with the rGO nanostructures. The presence of higher
defects generates more active sites on rGO nanosheets that afford nu-
merous active sensing sites for sensing during the electrochemical

Fig. 4. (a–e) TEM images at low and high magnification of the prepared Au-CF@rGO. (f) Its corresponding SAED pattern, and (g–l) EDX elemental mapping of Au-
CF@rGO, displaying the uniform distribution of C, O, Cu, Fe, and Au.
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reactions. Furthermore, the mono-, bi-, and tri-metallic nanomaterials
present in the nanostructure matrix may enhance the electrocatalytic
activity[47,48].

Furthermore, to verify the elemental composition and oxidation
states of the US–DS synthesized Au-CF@rGO material by XPS analysis
and depicted in Fig. 2 (a–f). In the survey spectrum, the presence of C1s,
O1s, Cu 2p, Fe 2p, and Au 4f peaks confirm the formation of Au-CF@
rGO (Fig. 2(a)). The four deconvoluted peaks of the C 1 s belong to
C = C, C-C, C-O, and O-C-O at 284.2, 284.8, 285.4, and 288.7 eV, re-
spectively (Fig. 2(b)). The O1s spectrum has two deconvoluted peaks at
around 529.4 and 531.4 eV well agreement with O2– and OH–, re-
spectively (Fig. 2(c)). The high-resolution Cu 2p can be deconvoluted
into two peaks at 933.5 eV and 954.2 eV respectively, associated with
Cu2+ satellite peak around 943.3 eV (Fig. 2(d). The Fe 1 s spectrum
shows a peak at 710.9 eV and 724.6 eV that can be correspond to the
Fe3+ of the Fe 2p3/2 and Fe 2p1/2 , respectively (Fig. 2(e) [51,52]. The
obtained XPS results confirm the formation of CuFe2O4 in the rGO
matrix. Moreover, the deconvolution of Au 4f into two symmetrical
peaks at 84.0 eV (4f7/2) and 87.7 eV (4f5/2) corresponds to Au0

(Fig. 2(f)). The peak position and symmetry of these peaks are in good
agreement with metallic gold strongly attached to the surface of rGO,
which agrees with the XRD data.

3.2. Morphological studies

FE-SEM image of the US-DS Au-CF@rGO, CF@rGO, and Au@rGO
samples are revealed in Fig. 3 (a-c). The FE-SEM images of the prepared
samples indicate a randomly aggregated, disordered structure of mono-,
bi-, and tri-metallic nanoparticles anchored on GO sheets in a wrinkled
and folded manner. This wrinkled structure could be due to oxidation of
the carboxyl and hydroxyl groups present on the GO nanosheets. This

morphological study shows that the mono-, bi-, and tri-metallic nano-
particles were successfully fixed on wrinkled and folded GO nanosheets.

Further, the US–DS prepared Au-CF@rGO nanostructure was ex-
amined by high magnification HR-TEM analysis, SAED, and EDX ele-
mental mapping, and their images are shown in Fig. 4(a–l). In the high-
resolution images (Fig. 4(a–e)), it can be observed that Au-CF nano-
particles (size ~ 15 nm) are strongly attached to the rGO nanosheets.
The d (111) = 2.3499 Å represents the Au and d (020) = 2.9791 Å, d
(121) = 2.4821 Å represents the CF in the prepared Au-CF@rGO
samples. Both Au and CF are homogeneously well mixed and strongly
connected to the carbon nanostructures. The strong attachment of the
nanomaterials to the rGO matrix is due to the high-speed shock waves
produced during the ultrasonication process. Moreover, the several
concentric rings with many intense spots that are present in the SAED
pattern clearly show that the anchored material has a polycrystalline
nature Fig. 4(f). These results are in accordance with the XRD spectral
data shown in Fig. 1. In addition, EDS mapping analysis data indicate
that Au, Cu, Fe, O, and C are distributed homogenously throughout the
matrix material Fig. 4(g–l).

Two-dimensional (2-D) and three-dimensional (3-D) surface topo-
graphy was captured for the Au-CF@rGO sample and the topographs
are shown in Fig. 5(a,b). From the 2-D and 3-D images, it can be ob-
served that the prepared sample has a good surface roughness of the GO
sheets, as well as the even loading of the sub-nanometer Au-CF nano-
particles on the rGO sheets. From the 3D AFM profile, the surface
roughness value (Rf) of Au-CF@rGO was found to be 38.43 nm.

The specific surface area and pore size distribution of the prepared
Au-CF@rGO sample was analyzed by Brunauer–Emmett–Teller (BET)
and depicted in Fig. 6 (a&b). Fig. 6(a) shows the nitrogen adsorption
and desorption isotherms indicating type-IV trait with obvious hyster-
esis loops, showing the presence of mesopores in Au-CF@rGO sample.

Fig. 5. (a) 2-D and (b) 3-D AFM images of A-CF@rGO.

Fig. 6. (a) Nitrogen adsorption/desorption isotherm and (b) Pore. size distribution of Au-CF@rGO.
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The specific surface area of the prepared Au-CF@rGO sample was found
to be 288 m2g−1. The average pore size of the prepared Au-CF@rGO
sample was determined to be 4.3 nm (Fig. 6(b)), indicating the presence
of mesopores in the prepared sample. The presence of high surface area
obviously corresponds to more active sites, directly supporting the high
sensitivity of the sample.

3.3. Electrocatalytic activity of Au-CF@rGO-GCE toward DA detection

The as-prepared bare CGE, Au@rGO/GCE, CF@rGO/GCE, and Au-

CF@rGO/GCE electrodes were evaluated by cyclic voltammetry (CV)
toward DA detection using a three-electrode system with the aid of a
PBS electrolyte. Prior to the electrochemical analysis, optimization
studies for catalyst loading were performed to detect the accurate
amount of DA, as the quantity of material on the GCE can affect the
anodic/cathodic peak current and peak potential. Therefore, loading of
the Au-CF@rGO suspension was optimized first by CV using Au-CF@
rGO/GCE in the presence of PBS which contains 100 µL DA at a sweep
rate of 50 mV/s. The obtained anodic peak current response (bar graph)
is displayed in Fig. 7(a). The highest oxidation peak was observed with
8 µL of catalyst. There is an incremental in anodic peak current from 4
to 8 µL catalyst loading, indicating the active involvement of the Au-
CF@rGO modifier in the electrochemical oxidation of DA. Increasing
the loading amount beyond 8 µL slightly decreases the current response
due to the agglomeration of the particles on the GCE surface. This ag-
glomeration impedes electron movement, resulting in the anodic peak
current decrease. Therefore, an 8 µL suspension of the Au-CF@rGO
modifier was used as the optimized loading concentration for detecting
the electrochemical properties of DA for further studies.

The electrochemical properties of Au-CF@rGO/GCE were studied
under the optimized conditions using CV analysis of DA and compar-
isons with the other electrodes (bare GCE, Au@rGO/GCE, and CF@
rGO/GCE) were performed in same experimental procedures. The CV
response of the bare GCE, Au@rGO/GCE, CF@rGO/GCE, and Au-CF@
rGO/GCE in a PBS solution containing 100 µL DA (pH 7) at a scan rate
of 50 mV/s are depicted in Fig. 7(b). Due to poor interaction with
electroactive species on the bare GCE, no redox peaks were observed
with that system. In addition, the GCE modified with CF@rGE showed a
small redox response along with an observed negative shift for the
oxidation of DA due to the poor electron transfer behavior of CF@rGO.
The Au@rGO/GCE modified electrode exhibited well-defined redox
peaks, indicative of the excellent electron transfer behavior of the Au
NPs on the rGO surface producing the lowest oxidation/reduction peak
currents.

Among all electrodes, the Au-CF@rGO/GCE modified electrode
exhibited robust and well-defined redox peaks at 0.228 V (Epa, oxida-
tion of DA to dopamine quinone (DAQ)) and 0.118 V (Epc, reduction of
DAQ to DA). The corresponding oxidation and reduction reaction
pathways of DA during these electrochemical reactions are depicted in
the inset of Fig. 7(b). Compared with other modified electrodes in this
present study, the Au-CF@rGO/GCE electrode exhibit superior elec-
trochemical performance toward DA redox behavior. Thus, the in-
creased current response of DA on Au-CF@rGO/GCE can be ascribed to
better conductivity, high specific area, and quick response of the Au
nanoparticles.

To further verify the higher electrocatalytic activity of Au-CF@rGO/
GCE, CV was performed with PBS containing different concentrations of
DA (100–500 µL) in a fixed scan rate (50 mV/s) and the obtained results
were depicted in Fig. 7(c). The obtained results are clearly indicating
that a higher concentration of DA produces a steady-state redox peak
current with a trivial discrepancy in the peak potentials. This demon-
strates the higher electrocatalytic activity of Au-CF@rGO/GCE toward
the electrochemical detection of DA.The electrochemical performance
and elect catalyst activity of DA over Au-CF@rGO/GCE varied de-
pending on the applied sweep rate and electrolyte solution pH. There-
fore, CV was performed using Au-CF@rGO/GCE while varying the scan
rate form 10–200 mV/s with PBS containing 100 μM of DA (pH 7). The
obtained results are depicted in Fig. 8(a). From these results the scan
rate increased from 10 to 200 mV/s, the resultant anodic peak uni-
formly increased with a trivial shift in the potential. The redox behavior
and the corresponding peak potential change prove that the electro-
chemical oxidation process of DA is strongly consistent with the scan
rate.

Furthermore, linear relationships between the (scan rate)1/2 vs
anodic (Ipa) and cathodic (Ipc) peak currents were noted, with correla-
tion coefficients (R2) of 0.9993 and 0.9796, respectively and exhibited

Fig. 7. (a) Effect of various (4, 6, 8, and 10 µL) Au-CF@rGO catalyst loadings
(µg/µL) on the GCE electrode. (b) CV studies of the different catalytic electrodes
of bare/GCE, CF@rGO/GCE, Au@rGO, and Au-CF@rGO/GCE in a PBS (pH 7)
electrolyte solution with 100 μL DA at a scan rate of 50 mV/s (inset shows a
possible reaction mechanism of DA oxidation). (c) CV obtained for the Au-CF@
rGO/GCE electrode for various amounts of DA (100–500 μL) added in the ni-
trogen-saturated PBS electrolyte.
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in Fig. 8(b). The correlation coefficients for the Ipa and Ipc peak currents
are nearly equal to 1, indicating that the electrochemical behavior of
DA is a diffusion-controlled process over the Au-CF@rGO/GCE [46,53].
Furthermore, analysis of the electrochemical properties of DA (100 μL)
at various pH, ranging from 3 to 11, was carried out by CV analysis at a
constant scan rate (50 mV/s) and represented in Fig. 8(c). Among the
various pH, the highest oxidation peak was perceived in pH 7 indicating
the electroactive species are most active in neutral pH medium (around
7). Lower anodic peak currents were observed above and below pH 7,
indicating the instability of DA in both acidic and basic media. The
formal potential (E0) has a linear relationship toward DA over the pH
range from 3 to 11 and 58.5 mV/pH fitting value was attained, which
was closely correlated to the Nernst theoretical value of 59 mV/pH
(Fig. 8(d)) [54,55]. The results are in accordance with the theoretical
value and indicate an equivalent quantity of electrons and protons
transferred during the electrochemical reactions. From this study im-
plies that the prepared Au-CF@rGO modified electrode is two electrons
and two protons transfer process during the electrochemical process of
DA oxidation. Differential pulse voltammetry (DPV) is a more sensitive
technique to accurately determine electrochemical responses at low
concentration levels of small molecules. Therefore, low-level con-
centrations of DA were further assessed using DPV with the synthesized
Au-CF@rGO/GCE. Fig. 9(a) describes the DVP response of DA using
concentrations of 0.001–119.6 μM DA in a nitrogen saturated PBS so-
lution (pH 7) using the Au-CF@rGO/GCE electrode. The lower limit of

0.001 µM DA displayed an oxidation peak that linearly increased upon
DA addition to 119.2 µM due to the higher electrocatalytic activity of
DA with Au-CF@rGO/GCE.

Furthermore, the corresponding calibration plot of the Ipa vs DA
concentrations (μM) was fit and is depicted in Fig. 9(b). The linear
relationship was noted with the linear regression equation
Ipa = 0.0129x + 0.4382, R2 = 0.9938. The linear response range was
determined to be 0.001–107.1 µM. The LOD was calibrated to be
0.34 nM using the standard equation of 3σ/S [56–58]. The calculated
sensitivity is 8.743 µAµM-1cm−2. The calculated analytical parameters
are compared to the previously reported DA sensor parameters and are
summarized in Table 1. From these overall results, the US–DS route of
preparing Au-CF@rGO was found to produce better results and higher
electrocatalytic response for the detection of DA. The superior elec-
trochemical performances of the Au-CF@rGO material is mainly be-
cause of the presence of active defect sites, the nano sized catalytic
particles, the larger surface area, and the good metal-support interac-
tions. In addition, the US–DS method assisted the homogenous disper-
sion of catalytic nanoparticles anchored on the active defect cites of the
rGO surface.

To evaluate the practical feasibility, selectivity, stability, repeat-
ability, and reproducibility of Au-CF@rGO/GCE, it was further assessed
by DPV in the same conditions. The selectivity of the electrochemical
sensor was evaluated by DPV in various small biological molecules such
as ascorbic acid (AA), glucose (Glu), hydrogen peroxide (H2O2), folic

Fig. 8. (a) CV response of the Au-CF@rGO/GCE electrode with various scan rates from 10 to 200 mV/s in PBS electrolyte containing 100 μM DA. (b) Corresponding
calibration plots (c) Bar graph of the CV response of the Au-CF@rGO/GCE electrode at various pH ranging from 3 to 11, and (d) corresponding calibration plot for pH
vs. Epa.
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acid (FA), uric acid (UA), and metal ions, including Na+, K+, Cl–, I–,
and Br–. Fig. 9(c) shows the DPV’s current response of DA, 20-fold
higher concentrations of small molecules, and 50-fold higher con-
centrations of metal ions. Noted that, there is no significant change
(< 1%) in the oxidation peak current, indicating the excellent utility of
the DA sensor using Au-CF@rGO/GCE. Further, the repeatability of Au-
CF@rGO/GCE was examined by DPV measurements in 10 different
electrolyte systems (PBS, pH 7), and the obtained current responses are

presented in Fig. 9(d). The relative standard deviation (RSD) value was
found to be 4.1% (n = 3). In addition, Au-CF@rGO/GCE was used for
DPV after a time interval of five days is depicted in Fig. 9(e). There was
no significant change in the current response (< 5%) detected until an
interval of 10 days, demonstrating the excellent storage stability for the
modified electrochemical sensor. In addition, five different electrodes
were evaluated in a PBS electrolyte (pH 7), and the results are revealed
in Fig. 9(f). An RSD of 4.6% was obtained. It can thus be concluded that

Fig. 9. (a) DPV current response for different concentrations from 0.001 to 119.6 µM in nitrogen saturated PBS solution; (b) Corresponding calibration plot for
various DA concentrations vs Ipa (µA); (c) DPV analysis of the fabricated Au-CF@rGO/GCE sensor with different interfering species, (d) repeatability, (e) storage
stability, and (f) fabrication stability of the Au-CF@rGO/GCE sensor for DA detection.
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the Au-CF@rGO/GCE system possesses good stability, excellent re-
producibility, and acceptable repeatability for use as a DA sensor. To
evaluate possible practical applications, a real sample analysis of DA
was conducted using Au-CF@rGO/GCE as an electrode with banana
milk (available commercially), purchased from a local convenience
store in the Republic of Korea. DPV was used for analyzing these real
samples via a standard addition method. The recovery values obtained
are listed in Table 2. An appreciable recovery ranging from 97 to 99%
was achieved, suggesting that Au-CF@rGO/GCE is a promising material
for the analysis of real samples.

4. Conclusion

In summary, we successfully synthesized Au-CF@rGO by the US
followed by DS. The successful formation of the Au-CF nanoparticles
and their composition, crystallinity, and uniform distribution over the
rGO sheet was observed by XRD, XPS, Raman, FE-SEM, HR-TEM, and
EDS analyses. Further, the modified Au-CF@rGO/GCE electrode was
examined by various electrochemical analyses, and the Au-CF@rGO/
GCE modified electrode showed excellent activity toward DA detection.
Interestingly, higher peak currents with lower anodic potentials were
revealed by the fabricated Au-CF@rGO/GCE modified electrode with a
broader linear range of 0.001–119.6 µM, a lower detection limit of
0.001 µM, a LOD of 0.34 nM, and greater sensitivity of 8.743
µAµM−1cm−2. Moreover, the prepared sensor exhibited excellent re-
producibility and selectivity toward biological molecules and is thus a
possible alternative for a dopamine-detecting electrochemical sensor.
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