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A B S T R A C T   

Conversion–alloying–based anodes for sodium–ion batteries (SIBs) have attracted wide interest due to their high 
energy density and specific capacity. However, it suffers from volume expansion during operation, leading to 
poor cycling stability. This study introduces a novel carbon matrix, exfoliated graphene oxide (EGO), to alleviate 
the issues due to volume expansion in the antimony (III) oxide anode for SIBs. Four combinations of Sb2O3 with 
EGO were explored, and electrochemical performance was compared. An optimized combination (Sb–E1) 
showed a capacity of ~100 mAh g–1 at a high current density of 1 A g–1 with good cycling stability. The results 
show that EGO can effectively buffer the volume expansion and promote fast kinetics. An in–situ electrochemical 
impedance spectroscopy study revealed that the exceptional charge-transfer resistance varies during the alloying 
reaction but not during the conversion reaction. The full-cell is fabricated with P2-type layered Na2/3Ni1/3Mn2/ 

3O2 (NNMO) cathode. The Sb–E1/NNMO cell displayed an average operating potential of ~2.95 V, a high ca-
pacity of ~100 mAh g–1 at a current density of 1 A g–1, and a maximum energy density of ~100 Wh kg–1.   

1. Introduction 

The constant endeavour to commercialize safe, efficient, mobile, and 
cheap electrochemical energy storage has opened doors to post lith-
ium–ion battery (LIB) technologies, where sodium–ion batteries (SIBs) 
are a noteworthy candidate [1–5]. There is ceaseless research on SIBs 
aiming to improve the operating voltage, energy, and power density. To 
improve the performance of SIBs, multifarious anodes have been 
developed, which store Na+ through intercalation, conversion, and 
alloying mechanisms or their combinations [6–13]. While the interca-
lation mechanism offers better cycling stability, it lacks specific capac-
ity, eventually reducing the battery’s overall energy density. On the 
other hand, alloying and conversion–based anodes have significantly 
higher theoretical capacity [14–16]. However, using alloying and con-
version–based anodes is accompanied by some major challenges. a) 
During cycling, they experience massive volume expansion, eventually 
leading to particle agglomeration. The volume expansion causes a loss in 
contact between the current collector and active material. b) Thick solid 
electrolyte interface (SEI) on the electrodes that increase charge transfer 

resistance. Such predicaments eventually lead to poor cycling stability 
[17]. Elements such as Sn, Sb, Bi, Ge, and Si are well known for their 
alloying reaction with sodium, while oxides, sulfides, selenides, and 
phosphides of transition metals such Cu, Co, Fe, and Ni can undergo 
conversion reactions with sodium [18–23]. Antimony (Sb) is a high-
ly–explored alloying material with a theoretical capacity of 668 mAh g–1 

and a reaction potential of 0.2–0.4 V vs. Na. Antimony oxides and 
antimony–based intermetallic alloys (Sn–Sb, Sb–Si, Sb–Bi) are highly 
popular for Na+ storage through the conversion–alloying mechanism 
[24–27]. Several mechanisms have been proposed to mitigate the vol-
ume expansion (~290% for Sb) and its repercussions during cycling. 
These include constraining the nanosized active material in a carbon 
matrix and hollow structures to contain the active material core–shell 
structures [28,29]. Additionally, antimony (III, IV) oxides have poor 
conductivity and carbon matrices are used to improve it [30]. 

This study aims to eliminate the volume expansion and its aftermath 
by incorporating Sb2O3 in a chemically exfoliated graphene oxide (EGO) 
carbon matrix synthesized through a scalable and simple process. The 
concept of using graphene oxide as a carbon matrix for anchoring 
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antimony and oxides has been explored previously [24–29]. We used 
EGO as a volume buffer for antimony (III) oxides, a novel concept in SIBs 
for reversible Na+ storage. EGO has been explored in heterogenous 
catalysis as a stable substrate for the metal nanocatalyst [31]. This 
carbon support is extremely stable, and the catalyst could be successfully 
recycled after the reaction. This was the motivation for exploring exfo-
liated graphene oxide as the support for antimony (III) oxide. We 
explored different ratios of antimony to carbon by tuning the mass of the 
antimony precursor to the carbon matrix before pyrolysis. We have 
explored four such combinations of Sb2O3:EGO – 750:140, 750:70, 
750:46.6, and 750:23.3, which are referred to in the manuscript as 
Sb–E1, Sb–E2, Sb–E3, and Sb–E4, respectively. These compositions were 
tested in sodium–ion half–cells to optimize the cycling stability and rate 
performance. The composition exhibiting optimum performance has 
been assembled into a balanced sodium–ion full–cell with P2 type 
layered–Na2/3Ni1/3Mn2/3O2 cathode. 

2. Experimental section 

2.1. Synthesis of Sb2O3–EGO 

Exfoliated graphene oxide (EGO) was synthesized through a reported 
procedure [31] where commercially available graphite powder (was 
used as the precursor. Sb–EGO’s compositions have been synthesized 
through the same procedure. C6H9O6Sb (>99.99%, Sigma Aldrich) and 
ethanol (>99.9 %) have been used without any purification. C6H9O6Sb 
and EGO were dispersed in 25 mL and 75 mL of ethanol in individual 
beakers through probe sonication. Subsequently, they were mixed and 
again sonicated. During probe sonication, the beakers were kept in an 
ice bath to avoid an increase in temperature. The probe was immersed in 
the solution, leaving a small gap between the beaker’s base and the 
probe. The probe sonication involved ten cycles, with 60% amplitude for 
the first five and 80% amplitude for the next five. Each cycle consisted of 
one minute pulse ON followed by 30s rest. The mixture was transferred 
into a round bottom flask and subjected to forced vacuum drying until 
the solvent was completely removed. This was kept in a 65 ◦C oven until 
the above powder was completely dried. The precursor was then 
transferred into a ceramic crucible and heated at 400 ◦C for 4 hours in an 
argon atmosphere, with a heating ramp rate of 5 ◦C/min. After natural 
cooling to room temperature, the product, Sb2O3–EGO, was ground with 
a mortar pestle and used for electrochemical studies. 

The product’s Sb2O3 to EGO ratio was controlled by fixing the mass 
of C6H9O6Sb and adjusting the mass of EGO. 2.5 mmol of C6H9O6Sb was 
used with 140, 70, 46.6, and 23.3 mg of EGO to obtain Sb–E1, Sb–E2, 
Sb–E3, and Sb–E4, respectively. The synthesis of Sb2O3–EGO is sum-
marized in Scheme 1. 

2.2. Synthesis of P2–type Na2/3Ni1/3Mn2/3O2 (NNMO) 

NNMO was synthesized through sol–gel method as shown in Scheme 
S1, according to previous report [40]. A homogenous solution of sodium 
nitrate (NaNO3, >99%, Sigma Aldrich), nickel nitrate hexahydrate (Ni 
(NO3)2.6H2O, 99%, Loba Chemie), manganese nitrate tetrahydrate (Mn 
(NO3)2.4H2O, 97%, Sigma Aldrich) in 2.08:1:2 molar ratio was dissolved 

in deionized water and stirred for 30 minutes in room temperature. This 
solution was added dropwise to 20 mL of ethylene glycol (99.8%, 
anhydrous, Sigma Aldrich) under continuous vigorous stirring, and the 
obtained mixture was heated at 80 ◦C to obtain the gel precursor. This 
precursor was heated in a muffle furnace at 850 ◦C for 3 hours with a 
ramp rate of 3 ◦C/min and was allowed to cool naturally to room tem-
perature to obtain the final product. 

2.3. Material characterization 

X–ray diffraction studies of all the samples were performed in Rigaku 
Smartlab automated multipurpose X–ray diffractometer with a mono-
chromatic Cu Kα radiation (λ = 1.5604 Å). X–ray photoelectron spec-
troscopy (XPS, Multilab, 2000, UK) was performed to study the surface 
chemistry of the materials. The surface imaging of the samples was 
studied through scanning electron microscopy (FE–SEM S–4700, Hita-
chi, Japan), and high–resolution transmission electron microscopy 
(HR–TEM, JEM–2000, EX–II, JEOL, Japan) was used to study the crystal 
structure and morphology. The carbon content in Sb–E1 was estimated 
through thermogravimetric analysis (TGA, Shimadzu, Japan), with a 5 
◦C min–1 ramp rate in the air atmosphere. LabRam HR800 UV Raman 
microscope (Horiba Jobin– Yvon, France) with a 515 nm diode laser as a 
light source was used to record the Raman spectra of Sb–E1 at room 
temperature. 

3. Electrochemical characterization 

3.1. Electrode fabrication 

All the Sb2O3–EGO samples were coated on copper foil with an active 
material: conductive carbon: binder ratio of 70:10:20 wt.%. To begin 
with, the binder, polyvinylidene fluoride binder (PVDF), is dissolved in 
1–methyl–2–pyrrolidinone (NMP, anhydrous, Sigma Aldrich, >99.5%). 
Following this, the conductive additive (acetylene black, AB) and active 
material (Sb2O3–EGO) were added to the above and stirred at room 
temperature overnight. The homogenous slurry thus formed was coated 
onto copper foil using the doctor blade technique and dried at 65 ◦C in 
an air oven. Subsequently, a calendar press was used to press the copper 
foil, and 12 mm electrodes were punched. 

NNMO electrodes for half–cell testing were made following the 
above method, but the ratio of NNMO: AB: PVDF was 70:20:10 wt.%. 
NNMO electrodes for full–cell testing were fabricated on 14 mm SS mesh 
(Goodfellow, UK) current collector. For this, a free–standing film was 
prepared in a mortar pestle with active material (NNMO), conductive 
carbon (AB), and teflonized acetylene black (TAB-2, binder) with 
ethanol as a solvent and was pressed onto the SS mesh using Specac 
hydraulic press. The ratio of NNMO:AB:TAB was adjusted to 70:15:15 
wt.%. The mass of NNMO for the full–cell was adjusted according to the 
mass and capacity of the Sb–E1 after pre–cycling to construct a balanced 
full–cell. Mass balancing was performed according to the formula. 

manode × Canode = mcathode × Ccathode  

m is the mass of active material, and C is the specific capacity. 

Scheme 1. Synthesis of Sb–EGO.  
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3.2. Half and full–cell studies 

All the cells were assembled inside an MBraun inert glove box 
workstation with O2 <0.1 ppm and H2O <0.1 ppm in a CR2016 coin-
–cell. A glass microfiber separator was used in all the cells (Whatmann, 
cat no. 1825–047, UK). The electrolyte used was 1M sodium perchlorate 
(NaClO4, Sigma Aldrich, >98%) dissolved in 1.1 vol.% of propylene 
carbonate (PC, anhydrous, Sigma Aldrich, >99.7%) and dimethyl car-
bonate (DMC, anhydrous, Sigma Aldrich, >99%) with 5 vol.% of fluo-
roethylene carbonate (FEC, Sigma Aldrich, >99%) additive. The 
half–cells were assembled with sodium metal foil as a reference and 
counter electrode. Before cell assembly, all the electrodes were kept in a 
vacuum oven for 4 hours at 75 ◦C to ensure complete drying. Sb–E1 
electrodes were cycled four times before assembling into full–cells. 
These pre–cycled coin–cells were opened, and the electrode was care-
fully removed from the cell and assembled with an NNMO cathode to 
make the full–cell. BioLogic battery tester (BCS–805) was used to 
perform all the electrochemical tests. The specific capacity of half and 
full–cells have been calculated by taking the anode active material mass. 
The specific energy and power density have been calculated with the 
anode’s and cathode’s active material mass. 

4. Results and Discussion 

The material characterization of Sb–E1 is shown in Fig. 1. The major 
sharp peak in the X–ray diffraction (XRD) at 2θ=22.66∘ (Fig. 1(a)) 
corresponds to the (222) plane of Sb2O3 crystal. All the peaks can be 
indexed to Sb2O3 (DB card # 01–071–0365). The XRD pattern does not 
show the presence of any impurity in the sample. The peaks are sharp 
and well–distinguished, indicating the highly crystalline nature of 
Sb–E1. No broad peaks correspond to the carbon matrix, which points to 
the high antimony loading in the material. For comparison, the XRD 
patterns of Sb–E2, Sb–E3, Sb–E4, and EGO are shown in Fig. S1. The 
XRD patterns of the antimony–EGO samples are similar, ensuring the 
presence of highly crystalline Sb2O3 in all the samples. The broad peak 
seen in the XRD analysis of EGO, representing the amorphous carbon, is 

absent in all the antimony samples, indicating a high anti-
mony–to–carbon weight ratio. The Raman spectra of Sb–E1, shown in 
Fig. 1(b), have peaks corresponding to Sb2O3 and EGO. The sharp peaks 
at 256, 358, 378, 455, and 711 cm–1 correspond to cubic Sb2O3. The 
Raman peak observed at 455 cm–1 belongs to Sb–O–Sb bending mode, 
whereas the peaks at 256, 358, 378, and 711 cm–1 are from the Sb–O–Sb 
stretching modes. These are in agreement with the reported literature 
[32]. Two broad peaks at 1350 and 1580 cm–1 are the D and G band 
peaks arising from EGO (inset of Fig. 1(b)). The ID/IG ratio is calculated 
to be ~1, which denotes the disordered structure of EGO. Fig. S2 shows 
the X–ray photoelectron spectra (XPS) of Sb–E1, where multiple peaks 
can be indexed to Sb 3d, Sb 3p, O 1s, and C 1s. Fig. 1(c) and 1(d) show 
the deconvoluted XPS peaks. The peaks in Fig. 1(c) at 530.1 and 539.5 
eV binding energies correspond to Sb 3d5/2 and Sb 3d3/2, indicating the 
presence of antimony (III) oxide in Sb–E1. There are two deconvoluted 
peaks belonging to O 1s, which are marked in Fig. 1(c). The C 1s peak 
(Fig. 1(d)) can be deconvoluted into three peaks at 284.6, 286.4, and 
289 eV. These peaks arise from graphitic carbon (C–C sp2), C–O, and 
O–C=O present in EGO [33–35]. A quantitative estimation of carbon 
content in Sb–E1 is obtained from thermogravimetric analysis (TGA, 
Fig. S3), which showed ~27 wt.%. 

The Sb–E1 was analyzed using scanning electron microscopy (SEM) 
and transmission electron microscopy (TEM) studies. The imaging 
techniques reveal that Sb2O3 has been homogenously distributed in the 
carbon matrix. The broken graphene oxide (GO) sheets embedded with 
Sb2O3 particles are clearly visible in the SEM image in Fig. 1(e). The 
Sb2O3 particle sizes range from a few nanometers to a few hundred 
nanometers with irregular morphology. The absence of agglomeration 
among Sb2O3 particles and homogenous distribution in the carbon 
matrix is attributable to probe sonication during the synthesis. Well-
–distinct (222) crystal planes separated by 0.32 nm can be seen in a 
higher–resolution TEM image of the Sb2O3 particles (Fig. 1(h)). The 
selected area electron diffraction (SAED) pattern in Fig. 1(i) shows the 
polycrystalline nature of the material, of which two rings can be indexed 
to (222) and (111) planes [36]. The presence of Sb, O, and C is further 
confirmed through elemental mapping (Fig. 1(j–m)). 

Fig. 1. (a). XRD pattern of Sb–E1, (b) Raman spectra of Sb–E1; peaks arising from D and G band of carbon are given in the inset, deconvoluted XPS peaks of (c) Sb3d 
and O1s, and (d) C1s, (e) SEM image of Sb–E1, (f–h) TEM images of Sb–E1, (i) SAED pattern for Sb–E1, and, (i) Bright-field TEM image of Sb–E1, elemental mapping 
of (k) C, (l) O, and, (m) Sb. 

K. Subramanyan et al.                                                                                                                                                                                                                         



Electrochimica Acta 470 (2023) 143308

4

First, the Sb–E1, Sb–E2, Sb–E3, and Sb–E4 samples were subjected to 
half–cell studies. Sb2O3 undergoes a conversion–alloying reaction dur-
ing Na+ storage. This reaction can be represented as[28,37]: 

1stdischarge : Sb2O3 + xNa+ + xe− →xSb0 + xNaxSb2O3
xNaxSb2O3 + (6 − x) Na+ + (6 − x)e− →2Sb0 + 3 Na2O

Sb0 + xNa+ + xe− →NaxSb 

Subsequent cycles: 

(Conversion reaction) Sb2O3amorphous + 6Na+ + 6e− ↔ 2Sb0 + 3Na2O  

(Alloying reaction) Sb0 + xNa+ + xe− ↔ NaxSb 

Fig. S4 is the first cyclic voltammetry curve for all Sb–E samples. The 
major reduction peaks for all the samples are at ~0.005 and ~0.38 V vs. 
Na. The large cathodic peak at 0.38 V vs. Na arises from the structural 
reorientation and the electrolyte decomposition at the electrode surface, 
forming a SEI, in addition to the conversion reaction and subsequent 
formation of NaxSb [38]. The peak at 0.005 V vs. Na can also be ascribed 
to the alloying reaction, leading to the formation of the NaxSb phase. A 
minor reduction peak around 1 V vs. Na is seen in all the samples, and 
this peak current increases with increasing EGO content. According to 
previous reports [38], such a peak is absent in the first cycle for pure 
Sb2O3. Hence this might be arising from the electrochemical reactions 
with EGO since the increasing peak current can be correlated with 
increasing EGO content in the sample. The oxidation peaks in the reverse 
scan during the first cycle are at ~0.8 V vs. Na, and the broad peak is at 
~1.50 V vs. Na. These peaks do not change in the subsequent cycle and 
represent the dealloying and formation (conversion of Sb0 into its oxide) 
of Sb2O3, respectively [39] (Fig. 2(a)). There are major changes in peak 
current, along with the appearance of new peaks in the cathodic scan in 
the second cycle (Fig. 2(a)). The additional peak at 0.90 – 1 V vs. Na for 

all the samples can be assigned to the conversion reaction, leading to the 
formation of Sb0. All the other anodic peaks (0.38 and 0.005 V vs. Na) 
can be assigned to the alloying reaction. The peak current at 0.38 V vs. 
Na drastically decreases compared to the first cycle, affirming that the 
additional current contribution is due to the irreversible Na+

consumption. 
The electrochemical performance of bare EGO and commercially 

purchased Sb2O3 was evaluated in half–cell configuration in the voltage 
window 0.005 – 3.00 V vs. Na (Fig. S5 and S6). EGO’s galvanostatic 
charge–discharge (GCD) curves portray typical pseudocapacitive 
adsorption–based Na+ storage. Within 50 cycles, the specific capacity 
falls below 50% of its initial capacity. Commercially obtained Sb2O3 
half–cell shows a very poor performance, where the specific capacity 
drops to an inappreciable value within ten cycles. The electrochemical 
performances of Sb–EGO samples were compared by studying their rate 
performance and long–term cycling. Sb–E1 displays the best rate per-
formance with the highest capacity value of ~113 mAh g–1 at a current 
density of 1000 mA g–1, shown in Fig. 2(b). The rate performance of 
Sb–E (2–4) and their GCD curves is given in Fig. S7. Before rate per-
formance, the cells were subjected to 7 cycles of GCD at a current density 
of 25 mA g–1. The capacity at the current density of 1000 mA g–1 is 
strongly influenced by the ratio of Sb2O3 to EGO. Sb–E1, with the 
highest EGO content, offered the highest capacity at current density of 
1000 mA g–1, followed by Sb–E2, Sb–E3, and Sb–E4 in that order. Fig. 2 
(e) shows the cycling test of all the samples for 100 cycles at current 
density of 100 mA g–1 from 0.005 to 3.00 V vs. Na. The average oper-
ating potential of the cell is determined to be 0.77 V vs. Na at a current 
density of 100 mA g–1. The initial irreversibility is highest for Sb–E1 due 
to the highest carbon content. The specific discharge capacity in the 
second cycle is 545, 320, 325, and 353 mAh g–1 for Sb–E1, E2, E3, and 
E4, respectively. After 100 cycles, the capacity of Sb–E1 is 345 mAh g–1, 

Fig. 2. (a) CV curves of Sb–E1, Sb–E2, Sb–E3, and Sb–E4 at a scan rate of 0.1 mV s–1, (b) specific capacity during rate performance of Sb–E1 half–cell at current 
density of 50,100, 250, 500, 1000, and 25 mA g–1, (c) GCD curves of Sb–E1 half–cell during rate performance, (d) GCD curves of Sb–E1 half–cell during long term 
cycling, and (e) long term cycling performance of Sb–E1, Sb–E2, Sb–E3, and Sb–E4 half–cells. All the half–cell testing has been done from 0.005 to 3.00 V vs. Na. 
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which is a capacity retention of 66% with respect to the first reversible 
capacity. Sb–E1 displays the highest capacity and capacity retention for 
long–term cycling, owing to the higher EGO content. The GCD curves of 
Sb–E1 for rate performance and long–term cycling is shown in Fig. 2(c, 
d). For comparison, the GCD curves of Sb (E2–E4) are shown in Fig. S8. 
It can be seen that after a high current rate, when tested at a current 
density of 25 mA g–1, Sb–E1 half–cell retains the shape of the GCD curve 
prior to the high current testing, showing the robustness of the material. 
Though capacity decay is noticeable in all these samples, the decay rate 
is gradual (Sb–E2< Sb–E3< Sb–E4), in the order of decreasing EGO 
content. The plateaus in the GCD curve match exactly with the peaks in 
the CV curve. The first discharge in the long–term cycling has a capacity 
much higher than the second cycle, indicating irreversible reactions, 
which was also seen in the CV curves. EGO abets high current perfor-
mance and GCD cycling test through three factors: (a) It is flexible 
support that cushions the volume expansion of Sb2O3 during charging 
and discharging, (b) EGO boosts the electronic conductivity, promoting 
fast kinetics, and (c) The optimum loading of EGO averts agglomeration 
of Sb2O3. 

An in-situ electrochemical impedance study (in-situ EIS) of the Sb-E1 
half–cell was conducted over 50 cycles to examine changes in charge- 
transfer resistance. EIS covered a frequency range from 10 kHz to 1 
Hz with a 10 mV voltage amplitude. A detailed Nyquist plot in Fig. 3 
illustrates each potential during discharge and charge, focusing on the 
high-frequency region. Fig. S9 presents the charge-transfer resistance 
(RCT) vs. cycle number during charge and discharge. RCT increases 
during discharge cycles (except for the first cycle), with the highest 
value occurring at a cell voltage of 0.005 V vs. Na. The notable increase 
in RCT at the end of discharge could be attributed to two scenarios. 

Firstly, the possibility of the destruction and reformation of the SEI 
layer was considered. The initial RCT at 2 V vs. Na before the first 
discharge exceeded 450 Ω but decreased to around 110 Ω after the first 
charge. In subsequent cycles, the RCT remained below 80 Ω at the 
charged state. However, at the end of each discharge, RCT increased, 
although not as dramatically as after the initial discharge. Importantly, 
CV curves did not display peaks corresponding to electrolyte decom-
position, suggesting that SEI destruction and reformation were unlikely. 

Alternatively, increased RCT values during discharge, particularly at 
0.40 V vs. Na, may be attributed to an alloying reaction between Na+ and 
Sb0. Further confirmation of this scenario could be achieved by 
analyzing EIS curves during the charging process. EIS measurements 
during charging were recorded at cell voltages ranging from 0.1 to 3 V 
vs. Na. The highest RCT values occurred for EIS curves up to 0.75 V vs. Na 
during charging, after which they began to decrease. Notably, a CV peak 
centered at 0.8 V vs. Na represented the desodiation reaction. Conse-
quently, the second scenario explains the elevated RCT values at low cell 
voltages more plausibly. 

A full–cell study with Sb–E1 anode and Na2/3Ni1/3Mn2/3O2 (NNMO) 
cathode was conducted in the potential limit of 3.7–1.7 V vs. Na. NNMO 
was synthesized via sol–gel route as shown in Scheme S1. The 
as–synthesized NNMO was subjected to material characterization tech-
niques such as XRD, XPS (Fig. S10), SEM, and TEM (Fig S11 (a–d).). In 
the XRD (Fig. S10(a)), a well–defined sharp peak is seen at 2θ = 15.9◦, 
which corresponds to the (002) plane. The XRD spectra convey a highly 
crystalline nature of NNMO. XPS survey spectrum (Fig. S10(b–e)) re-
veals the presence of multiple peaks, which have been deconvoluted and 
indexed to Na, Ni, Mn, and O, which is affirmed through the elemental 
analysis (Fig. S11(e–f)). All the above results are in good agreement 
with the reported literature [40]. NNMO has a plate–like structure, 
forming agglomerates (Fig. S11(a,c)). The SAED pattern confirms the 
highly crystalline nature of NNMO. 

The electrochemical studies of NNMO (CV, rate performance, long-
–term cycling) were carried out in half–cells in the potential range of 2–4 
V vs. Na and shown in Fig. S12. The cathode shows highly commendable 
rate performance and an average operating potential of ~3.4 V vs. Na, 
making it an ideal candidate to be paired with Sb–E1. Long–term cycling 

shows a minimal capacity loss (~0.1%) after 100 cycles at current 
density of 100 mA g–1. After running CV tests, the full cell potential limit 
was set as 1.7–3.7 V. The anode was pre–cycled prior to full–cell as-
sembly. Fig. 4(a) is the CV for the Sb–E1/NNMO at a scan rate of 0.1 mV 
s–1. During charge, the CV curves exhibited a sharp peak at 2.94 V and 
two broad peaks at 2.65 and 1.96 V. While discharging, a sharp peak can 
be seen at 3.20 V and a broad shoulder peak at 2.95 V. Sb–E1/NNMO has 
promising rate performance results (Fig. 4(b)), where capacity is 101 
mAh g–1 at a current rate of 1000 mA g–1. The full–cell is not devoid of 
initial irreversibility during the first charge, even after pre–cycling of the 
anode, during the long–term cycling at current density of 200 mA g–1, 
shown in Fig. 4(c). This might arise from the irreversibility in the 
cathode. The initial discharge capacity is 226 mAh g–1; after 100 cycles, 
it reaches 116 mAh g–1 with 51% of the initial capacity retention. 

The Ragone plot of the Sb–E1/NNMO is shown in Fig. 5, where en-
ergy and power density have been calculated with the active material 
mass in the anode and cathode. The maximum energy density of the cell 
is 100 Wh kg–1 (at 50 mA g–1), and the maximum power density is 0.42 
kWh kg–1 (at 1000 mA g–1). The energy density of Sb–E1/NNMO full-
–cell is at par with rGO–Sb2S3/NNMO [41] (80 Wh kg–1), Sb nanorod 
arrays/NNMO [42] (94.5 Wh kg–1), and Sb-Ni nanorod arrays/NNMO 
[43] (100 Wh kg–1) which all use NNMO cathode (all works calculate 
energy density with respect to active material mass in anode and cath-
ode). The antimony–based anode reported in this work is synthesized 
through a scalable and easy process. The full–cell displayed a very high 
average working potential of ~2.9 V when cycled at a current density of 
200 mA g–1. 

5. Conclusion 

In summary, we have studied the electrochemical performance of 
antimony (III) oxide with exfoliated graphene oxide (EGO) as a volume 
buffer for the first time. The effect of EGO on the electrochemical per-
formance of the half–cell was quantitatively evaluated, and Sb–E1 was 
seen to exhibit the best performance among the different materials. 
Sb–E1 displayed a higher initial discharge capacity of 545 mAh g–1 and 
good retention after 100 cycles at current density of 100 mA g–1. The 
presence of EGO highly influenced the high current capacity and ca-
pacity retention after the high current testing. We determined that EGO 
provides cushioning during charge–discharge, promotes faster kinetics, 
and forestalls particle agglomeration. During the in–situ EIS study, the 
charge-transfer resistance (RCT) was the highest during discharge, 
increasing from 0.40 V vs. Na and maximizing at 0.005 V vs. Na. The 
reverse trend was observed during charging, reaching a much lower 
value at 0.75 V vs. Na. These indicated that RCT changes considerably 
during the alloying reaction of Sb0 with Na+. A full–cell was assembled 
with Sb–E1 anode and NNMO cathode, which exhibited promising re-
sults. The average operating potential was ~2.9 V, with a maximum 
energy density of 100 Wh kg–1 and a maximum power density of 0.42 
kWh kg–1. EGO is an excellent support for conversion–alloying–based 
materials that can circumvent the issues arising from the huge volume 
expansion during charge–discharge. 
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Fig. 3. In–situ EIS study of Sb–E1 half–cell.  
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